A DIRECT PROOF THAT VWB PROCESSES ARE CLOSED IN THE d-METRIC

BY

JOHN C. KIEFFER*

ABSTRACT

As defined in **the literature, a process** is very **weak Bernoulli** if a **certain** property $P(\varepsilon)$ is satisfied for every $\varepsilon > 0$. By means of an easy proof, it is shown that given $\epsilon > 0$, there exists $\delta > 0$ such that given any two stationary processes **whose** d-distance is less than 8, if **one of the processes** is very **weak Bernoulli then the other process** is "almost" very **weak Bernoulli in the sense that the** property $P(\varepsilon)$ is satisfied. Using this result a direct proof can be given that the very weak Bernoulli processes are closed under the \overline{d} -distance, and also that a **finitely determined process** is very **weak Bernoulli.** Relativized versions **of these results are also** considered.

1. In this paper if S is a finite set, $S[*]$ denotes the set of all doubly infinite sequences $x = (x_i)_{i=-\infty}^{\infty}$ from S. We make S^{*} into a measurable space by adjoining to S^* the usual product σ -field of subsets of S^* . By a process we will mean a measurable map X from some measurable space Ω to a sequence space S^* , S finite. We say X has state space S. If $X : \Omega \rightarrow S^*$ is a process and *i* is an integer, X_i will denote the map from $\Omega \rightarrow S$ such that

$$
X_i(\omega)=X(\omega)_i,\qquad \omega\in\Omega.
$$

For integers m, n with $m \leq n$, X_m^r will denote the function $(X_m, X_{m+1}, \dots, X_n)$, $X_{-\infty}^n$ will denote the function (\cdots, X_{n-1}, X_n) , and if *n* is positive, X^n will denote (X_1, \dots, X_n) . If (Ω, \mathcal{F}) is a measurable space let $\mathcal{P}(\Omega)$ be the family of all probability measures on \mathcal{F} . If X_1, \dots, X_n are measurable maps from Ω to measurable spaces S_1, \dots, S_n respectively, and $P \in \mathcal{P}(\Omega)$, then $P(\cdot | X_1, \dots, X_n)$ denotes a map from $\Omega \rightarrow \mathcal{P}(\Omega)$ such that for each $E \in \mathcal{F}$, the random variable $P(E \mid X_1, \dots, X_n)$ serves as the conditional expectation under P of the characteristic function of E given the sub- σ -field of $\mathcal F$ generated by X_1, \dots, X_n . If, in

^{&#}x27; Supported by NSF Grant MCS-7821335.

Received January 29, 1980 and in revised form July 15, 1981

addition, X is a measurable map from Ω to a measurable space (S, \mathcal{S}) , $P^{X}(\cdot | X_1, \dots, X_n)$ denotes the $\mathcal{P}(S)$ -valued map defined on Ω such that for each $E \in \mathcal{G}$,

$$
P^X(E\mid X_1,\cdots,X_n)=P(\lbrace X\in E\rbrace \mid X_1,\cdots,X_n).
$$

 P^x denotes the distribution of X; i.e., the probability measure on \mathcal{S} such that

$$
P^{\times}(E) = P(X \in E), \qquad E \in \mathcal{G}.
$$

Let C, D be finite sets and σ : $C \times D \rightarrow [0, \infty)$ a non-negative function. Let U, V be the projections from $C \times D$ to C, D, respectively. Then if $\mu \in \mathcal{P}(C)$, $\nu \in \mathcal{P}(D)$, we define $\bar{\sigma}(\mu, \nu)$, the $\bar{\sigma}$ -distance between μ and ν , as follows:

$$
\bar{\sigma}(\mu, \nu) = \inf_{\lambda \in \mathcal{P}(\mu, \nu)} E_{\lambda} \sigma(U, V),
$$

where $\mathcal{P}(\mu, \nu)$ denotes the set of all $\lambda \in \mathcal{P}(C \times D)$ such that $\lambda^U = \mu$, $\lambda^V = \nu$, and E_{λ} denotes expectation with respect to λ .

Fix finite sets A, B for the rest of the paper. Let T_A (T_B) denote the shift transformation on $A^{\infty}(B^{\infty})$. Let $T_A \times T_B$ denote the map from $A^{\infty} \times B^{\infty} \rightarrow A^{\infty} \times$ B^* such that

$$
(T_A \times T_B)(x, y) = (T_Ax, T_By).
$$

Let $\mathcal{P}(T_A)$ ($\mathcal{P}(T_B)$) denote the set of measures in $\mathcal{P}(A^{\infty})$ ($\mathcal{P}(B^{\infty})$) stationary with respect to T_A (T_B). Let $\mathcal{P}(T_A \times T_B)$ denote the set of measures in $\mathcal{P}(A^* \times B^*)$ stationary with respect to $T_A \times T_B$.

Let $d : B \times B \rightarrow [0, 1]$ be the Hamming distance $(d(x, y) = 0, x = y; d(x, y) = 0)$ 1, $x \neq y$). For each $n = 1, 2, \dots$, let $d_n : B^n \times B^n \rightarrow [0, \infty)$ denote the *n*th order Hamming distance, which is defined so that if $x = (x_1, \dots, x_n)$ and $y =$ (y_1, \dots, y_n) are in B^n then

$$
d_n(x, y) = n^{-1} \sum_{i=1}^n d(x_i, y_i).
$$

Let X, Y be the processes which are the projections from $A^{\infty} \times B^{\infty} \rightarrow A^{\infty}, B^{\infty}$ respectively. Let $\bar{Y}: B^* \to B^*$ be the identity map. If $\lambda \in \mathcal{P}(T_A)$, let $\mathcal{P}(\lambda)$ be the set of all measures μ in $\mathcal{P}(T_A \times T_B)$ such that $\mu^X = \lambda$.

If $\nu \in \mathcal{P}(T_B)$, we say ν is very weak Bernoulli (VWB) [9, p. 92] if for any $\epsilon > 0$, there exists a positive integer m such that

$$
E_{\nu}\bar{d}_m(\nu^{\bar{Y}^m},\nu^{\bar{Y}^m}(\cdot\vert\bar{Y}^0_{-\infty}))<\varepsilon.
$$

If $\lambda \in \mathcal{P}(T_A)$ and $\mu \in \mathcal{P}(\lambda)$, we say μ is λ -conditionally VWB [11] if for any $\epsilon > 0$ there exists a positive integer m such that

$$
E_{\mu}\bar{d}_m(\mu^{Y^m}(\cdot\big\vert X),\mu^{Y^m}(\cdot\big\vert X,Y^0_{-\infty}))<\varepsilon.
$$

If $\mu, \nu \in \mathcal{P}(T_B)$, then $\bar{d}(\mu, \nu)$, the \bar{d} -distance between μ and ν [3, p. 15], is $\inf_{(U,V)} Ed(U_0, V_0)$, where the infimum is over all pairs of jointly stationary processes (U, V) (defined on a common probability space) such that U, V have state space B, U has distribution μ , and V has distribution ν . If $\lambda \in \mathcal{P}(T_A)$ and $\mu, \nu \in \mathcal{P}(\lambda)$, then $\bar{d}_{\lambda}(\mu, \nu)$, the λ -relativized \bar{d} -distance between μ and ν [10], is $\inf_{(H,U,V)} Ed(U_0, V_0)$, where the infimum is over all triples of jointly stationary processes (H, U, V) such that H has state space A, U, V have state space B, the joint distribution of (H, U) is μ and the joint distribution of (H, V) is ν .

2. We state now the main result of the paper. Its simple proof will be given at the end of the paper.

THEOREM 1. Let $\lambda \in \mathcal{P}(T_A)$, $\mu, \nu \in \mathcal{P}(\lambda)$. Let μ be λ -conditionally VWB. *Then if* $\tilde{d}_{\lambda}(\mu, \nu) < \varepsilon$ *there exists a positive integer m such that*

$$
E_{\nu}\bar{d}_m(\nu^{Y^m}(\cdot | X), \nu^{Y^m}(\cdot | X, Y^0_{-\infty})) < 2\varepsilon.
$$

Note that if $\lambda \in \mathcal{P}(T_A)$ is concentrated on a single element of A^{∞} , and $\mu, \nu \in \mathcal{P}(\lambda)$, then $\bar{d}_{\lambda}(\mu, \nu) = \bar{d}(\mu^{\nu}, \nu^{\nu})$. Also, μ is λ -conditionally VWB if and only if μ^Y is VWB. Thus we obtain the following corollary.

COROLLARY 1. Let $\mu, \nu \in \mathcal{P}(T_B)$. Let μ be VWB. If $\bar{d}(\mu, \nu) < \varepsilon$ then there *exists m such that*

$$
E_{\nu}\bar{d}_m\left(\nu^{\bar{Y}^m},\nu^{\bar{Y}^m}(\cdot\big|\bar{Y}^0_{-\infty})\right)<2\varepsilon.
$$

As an application, we present four results following from Theorem 1 and Corollary 1. The results are known, but the first published proofs of them were long and indirect. The first two results follow immediately from Theorem 1 and Corollary 1 and so require no proof.

I. Let $\lambda \in \mathcal{P}(T_A)$. If $\mu \in \mathcal{P}(\lambda)$ is the \bar{d}_λ -limit of a sequence of λ -conditionally VWB measures from $\mathcal{P}(\lambda)$, then μ is λ -conditionally VWB.

II. If $\mu \in \mathcal{P}(T_B)$ is the \bar{d} -limit of a sequence of VWB measures from $\mathcal{P}(T_B)$, then μ is VWB.

For the next two results we need a couple of definitions. We say $\mu \in \mathcal{P}(T_B)$ is finitely determined (FD) [9, p. 81] if convergence of any sequence $\{\mu_n\}$ from

 $\mathcal{P}(T_B)$ to μ weakly and in entropy implies convergence to μ in \tilde{d} -distance. If $\lambda \in \mathcal{P}(T_A)$ and $\mu \in \mathcal{P}(\lambda)$, μ is λ -conditionally FD [10] if convergence of any sequence $\{\mu_n\}$ from $\mathcal{P}(\lambda)$ to μ weakly and in entropy implies convergence to μ in \bar{d}_{λ} -distance.

III Let $\lambda \in \mathcal{P}(T_B)$ and let $\mu \in \mathcal{P}(\lambda)$ be λ -conditionally FD. Then μ is A-conditionally VWB.

PROOF. Pick a sequence $\{\mu_n\}$ from $\mathcal{P}(\lambda)$ which converges to μ weakly and in entropy, such that for each n , there exists a positive integer m such that for μ_n -almost all $x \in A^{\infty}$, the μ_n -conditional distribution of Y given $X = x$ is m th order mixing Markov. Then each μ_n is λ -conditionally VWB [7] and $\tilde{d}_{\lambda}(\mu_n, \mu) \rightarrow 0$. Hence, by Result I, μ is λ -conditionally VWB.

The last result can he proved in a similar fashion to III, or it can be observed that it follows from III by taking λ to be a trivial measure.

IV. If $\mu \in \mathcal{P}(T_B)$ is FD, it is VWB.

HISTORICAL REMARKS. IV was first shown by Ornstein and Weiss [4] using a long, indirect argument. A much simpler second proof was given by Feldman [1] using a property of measures called \overline{d} -extremality. III was shown by Rahe [6] using a generalization of the argument of Omstein and Weiss. II had to be deduced previous to this paper in an indirect manner by using the fact that \overline{d} -limits of FD measures are FD [2, p. 66], and that a measure is FD if and only if it is VWB [4], [9, theorem 12.3]. (Or one could proceed in a similar manner using the concept of \bar{d} -extremality [1] in place of the FD concept in the previous sentence.) Similarly, I had to be deduced using the facts that a \bar{d}_λ -limit of λ -conditionally FD measures is λ -conditionally FD [10, prop. 7] and that a measure in $\mathcal{P}(\lambda)$ is λ -conditionally FD if and only if it is λ -conditionally VWB [6] [11, lemma 6].

3. We conclude the paper by giving a couple of lemmas and then the proof of Theorem 1.

LEMMA 1. Let $C_1, \dots, C_n, D_1, \dots, D_n$ be finite sets. Let U_i $(i = 1, \dots, n)$ be the *projection from* $C_1 \times \cdots \times C_n \to C_i$. For each *i*, let $\sigma_i : C_i \times D_i \to [0, \infty)$ be given. Let σ : $(C_1 \times \cdots \times C_n) \times (D_1 \times \cdots \times D_n) \rightarrow [0, \infty)$ be the function

$$
\sigma((x_1,\dots,x_n),(y_1,\dots,y_n))=\sum_{i=1}^n\sigma_i(x_i,y_i).
$$

Let $\mu \in \mathcal{P}(C_1 \times \cdots \times C_n)$, $\nu \in \mathcal{P}(D_1 \times \cdots \times D_n)$. Suppose there are measures $\nu_i \in \mathcal{P}(D_i)$ $(i = 1, \dots, n)$ such that $\nu = \nu_1 \times \dots \times \nu_n$. Then,

$$
\bar{\sigma}(\mu, \nu) \leq \bar{\sigma}_1(\mu^{U_1}, \nu_1) + E_{\mu} \left[\sum_{i=2}^n \bar{\sigma}_i(\mu^{U_i}(\cdot \vert U^{i-1}), \nu_i) \right].
$$

PROOF. We can assume $n = 2$. (A simple induction argument can then be used for general *n*.) Let \bar{U}_i , \bar{V}_i be the projections from $C_i \times D_i \rightarrow C_i$, D_i respectively, $i = 1, 2$. Fix a probability measure π on $C_1 \times D_1$ such that the distribution of \bar{U}_1 under π is μ^{U_1} , the distribution of \bar{V}_1 under π is ν_1 , and $E_{\tau}\sigma_1(\bar{U}_1, \bar{V}_1) = \bar{\sigma}_1(\mu^{U_1}, \nu_1)$. For each $x \in C_1$ fix a probability measure $\mu(\cdot | x)$ on C_2 such that $\mu({}_{1} \cdot |U_1) = \mu^{U_2}(\cdot | U_1)$ a.e. [μ]. For each $(x, y) \in C_1 \times D_1$ define a probability measure $\pi(\cdot | x, y)$ on $C_2 \times D_2$ such that the distribution of \bar{U}_2 under this measure is $\mu(\cdot|x)$, the distribution of \bar{V}_2 is ν_2 and the $\pi(\cdot | x, y)$ expectation of $\sigma_2(\bar{U}_2, \bar{V}_2)$ is $\bar{\sigma}_2(\mu(\cdot | x), v_2)$. Let $\hat{\pi} \in \mathcal{P}((C_1 \times C_2) \times (D_1 \times D_2))$ be the measure

$$
\hat{\pi}((x_1,x_2),(y_1,y_2))=\pi(x_1,y_1)\pi(x_2,y_2\,|\,x_1,y_1).
$$

Then the distribution of U under $\hat{\pi}$ is μ and the distribution of V under $\hat{\pi}$ is v, where U, V are the projections from $(C_1 \times C_2) \times (D_1 \times D_2)$ to $C_1 \times C_2$, $D_1 \times D_2$ respectively. Hence,

$$
\bar{\sigma}(\mu, \nu) \leq E_{\pi}\sigma(U, V)
$$
\n
$$
= E_{\pi}\sigma_1(\bar{U}_1, \bar{U}_2) + \int_{C_1 \times D_1} \left[\int_{C_2 \times D_2} \sigma_2(\bar{U}_2, \bar{V}_2) d\pi(\cdot | x_1, y_1) \right] d\pi(x_1, y_1)
$$
\n
$$
= \bar{\sigma}_1(\mu^{U_1}, \nu_1) + \int_{C_1 \times D_1} \bar{\sigma}_2(\mu(\cdot | x_1), \nu_2) d\pi(x_1, y_1)
$$
\n
$$
= \bar{\sigma}_1(\mu^{U_1}, \nu_1) + E_{\mu}\bar{\sigma}_2(\mu^{U_2}(\cdot | U_1), \nu_2).
$$

The proof of the following lemma is so simple that we omit it.

LEMMA 2. Let C, D be finite sets, and let $\sigma: C \times D \rightarrow [0,\infty)$ be a given *function. Let* $\mu_1, \dots, \mu_n \in \mathcal{P}(C), \nu_1, \dots, \nu_n \in \mathcal{P}(D)$, and let $\alpha_1, \dots, \alpha_n$ be non*negative numbers summing to one. Then,*

$$
\bar{\sigma}\left(\sum_{i=1}^n\,\alpha_i\mu_i,\,\sum_{i=1}^n\,\alpha_i\nu_i\right)\leqq\sum_{i=1}^n\,\alpha_i\bar{\sigma}(\mu_i,\,\nu_i).
$$

PROOF OF THEOREM 1. Fix $\lambda \in \mathcal{P}(T_A)$ and $\mu, \nu \in \mathcal{P}(\lambda)$ such that μ is λ -conditionally VWB and $\bar{d}_{\lambda}(\mu, \nu) < \varepsilon$. Fix ε' so that $\bar{d}_{\lambda}(\mu, \nu) < \varepsilon' < \varepsilon$, and also $\delta > 0$ so that $\delta + \varepsilon' < \varepsilon$. On some probability space (Ω, \mathcal{F}, P) we may find jointly stationary processes (H, U, V) such that the distribution of (H, U) is μ , the

distribution of (H, V) is v, and $P[U_0 \neq V_0] < \varepsilon'$. Since μ is λ -conditionally VWB find k such that

$$
E\tilde{d}_k(P^{U^k}(\cdot\bigg|H),P^{U^k}(\cdot\bigg|H,U^0_{-\infty}))<\delta.
$$

For each positive integer j, let $\prod_{i=0}^{j-1} P^{U_{i+k+1}^{k+k}}(\cdot | H)$ denote the $\mathcal{P}(B^k)$ -valued map on Ω such that for each $\omega \in \Omega$, $[\prod_{i=0}^{j-1} P^{U_{\mu+i}^{k+k}}(\cdot | H)](\omega)$ is the product measure

$$
P^{U^k}(\cdot | H)(\omega) \times P^{U^{2k}_{k+1}}(\cdot | H)(\omega) \times \cdots \times P^{U^{m}_{(j-1)k+1}}(\cdot | H)(\omega).
$$

Then, by Lemma 1,

$$
E\bar{d}_{ik}\left(P^{U^{\mu}}(\cdot | H), \prod_{i=0}^{j-1} P^{U_{ik}^{\mu}+k}(\cdot | H)\right) \leq j^{-1} \sum_{i=1}^{j-1} E\bar{d}_{k}\left(P^{U_{ik}^{\mu}+k}(\cdot | H, U^{\mu}), P^{U_{ik}^{\mu}+k}(\cdot | H)\right)
$$

$$
= j^{-1} \sum_{i=1}^{j-1} E\bar{d}_{k}\left(P^{U^{\mu}}(\cdot | H, U_{1-ik}^{0}), P^{U^{\mu}}(\cdot | H)),
$$

which approaches

$$
E\overline{d}_k(P^{U^k}(\cdot \big| H, U^0_{-\infty}), P^{U^k}(\cdot \big| H)) \quad \text{as } j \to \infty.
$$

Similarly,

(1)

$$
E\bar{d}_{jk}\left(P^{U^k}(\cdot \, \big| \, H, U^0_{-\infty}, V^0_{-\infty}), \prod_{i=0}^{j-1} P^{U^{k+i}_{k+i}}(\cdot \, \big| \, H)\right) \\\leq j^{-1}\sum_{i=0}^{j-1} E\bar{d}_k(P^{U^k}(\cdot \, \big| \, H, U^0_{-\infty}, V^{-k}_{-\infty}), P^{U^k}(\cdot \, \big| \, H)).
$$

Fix *i*. For each $\omega \in \Omega$, the \overline{d}_k -distance between the measures $P^{U^k}(\cdot|H, U^0_{-\infty}, V_{-\infty}^{i^k})(\omega)$ and $P^{U^k}(\cdot|H, U^0_{-\infty})(\omega)$ is no greater than the total variation distance, which by [5, chap. 2] is upper bounded by

$$
\phi\bigg[\sum_{b\in B^k} P^{U^k}(b\bigg|H, U^0_{-\infty}, V^{-k}_{-\infty})(\omega)\log \frac{P^{U^k}(b\bigg|H, U^0_{-\infty}, V^{-k}_{-\infty})(\omega)}{P^{U^k}(b\bigg|H, U^0_{-\infty})(\omega)}\bigg],
$$

where $\phi : [0, \infty) \rightarrow [0, \infty)$ is the function $\phi(x) = 2x + 20\sqrt{x}$, and the logarithm is natural. Now ϕ is a concave function, so by Jensen's inequality

$$
E\overline{d}_k(P^{U^k}(\cdot \big| H, U^0_{-\infty}, V^{-ik}_{-\infty}), P^{U^k}(\cdot \big| H, U^0_{-\infty})) \leq \phi(I(U^k, V^{-ik}_{-\infty} \big| H, U^0_{-\infty})),
$$

where the argument of ϕ denotes the conditional mutual information of U^k , $V^{-ik}_{-\infty}$ given H, $U^0_{-\infty}$. But, by [8, theorem 7.6], $\lim_{i \to \infty} I(U^k, V^{-ik}_{-\infty} | H, U^0_{-\infty}) = 0$. Therefore, the right hand side of inequality (1) converges to $E\bar{d}_k(P^{U^k}(\cdot | H), P^{U^k}(\cdot | H, U^0_{-\infty}))$ as $j \to \infty$. By the triangle inequality, we have then that for j sufficiently large,

$$
E\bar{d}_{jk}(P^{U^{jk}}(\cdot\,|\,H),P^{U^{jk}}(\cdot\,|\,H,U^0_{-\infty},V^0_{-\infty}))\!<\!2\delta.
$$

By definition of the \vec{d}_{ik} -distance,

$$
\bar{d}_{ik}(P^{U^k}(\cdot | H), P^{V^k}(\cdot | H)) \leq E[d_{ik}(U^k, V^k) | H].
$$

Taking the expected value,

$$
E\overline{d}_{jk}(P^{U^{jk}}(\cdot | H), P^{V^{jk}}(\cdot | H)) \leq E[d_{jk}(U^{jk}, V^{jk})] = P[U_0 \neq V_0] \leq \varepsilon'.
$$

Similarly,

$$
E\overline{d}_{jk}(P^{U^{\mu}}(\cdot\,|\,H,U^{0}_{-\infty},V^{0}_{-\infty}),P^{V^{\mu}}(\cdot\,|\,H,U^{0}_{-\infty},V^{0}_{-\infty}))<\varepsilon',
$$

and so by the triangle inequality and Lemma 2, for j sufficiently large,

$$
E_{\nu}\overline{d}_{jk}(\nu^{\nu^{\mu}}(\cdot | X), \nu^{\nu^{\mu}}(\cdot | X, Y^{0}_{-\infty})) = E\overline{d}_{jk}(P^{\nu^{\mu}}(\cdot | H), P^{\nu^{\mu}}(\cdot | H, V^{0}_{-\infty}))
$$

\n
$$
\leq E\overline{d}_{jk}(P^{\nu^{\mu}}(\cdot | H), P^{\nu^{\mu}}(\cdot | H, V^{0}_{-\infty}, U^{0}_{-\infty}))
$$

\n
$$
< 2\delta + 2\varepsilon' < 2\varepsilon.
$$

REFERENCES

1. J. Feldman, *Some remarks about finitely determined and finitely fixed processes,* preprint.

2. J. Moser, E. Phillips and S. Varadhan, *Ergodic Theory, A Seminar,* New York University, 1975.

3. D. S. Ornstein, *Ergodic Theory, Randomness, and Dynamical Systems,* Yale University Press, 1974.

4. D. S. Ornstein and B. Weiss, *Finitely determined implies very weak Bernoulli,* Israel J. Math. 17 (1974), 94-104.

5. M. S. Pinsker, *Information and Information Stability of Random Variables and Processes,* Holden-Day, 1964.

6. M. Rahe, *Relatively finitely determined implies relatively VWB,* Canad. J. Math. 30 (1978), 531-548.

7. M. Rah¢, *Finite coding factors of Markov generators,* Israel J. Math. 32 (1979), 349-355.

8. V. A. Rokhlin, *Lectures on the entropy theory of measure preserving transformations,* Russian Math. Surveys 22 (1967), 1-52.

9. P. Shields, The Theory *of Bernoulli Shifts,* University of Chicago Press, 1973.

10. J. P. Thouvenot, *Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux syst~mes dont I' un est un schema de Bernoulli,* Israel. J. Math. 21 (1975), 177-207.

11. J. P. Thouvenot, *Remarques sur les systèmes dynamiques donnes avec plusieurs facteurs*, Israel J. Math. 21 (1975), 215-232.

DEPARTMENT OF MATHEMATICS

UNIVERSrrY OF MISSOURI-ROLLA ROLL& MO 65401 USA