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ABSTRACT 

As defined in the literature, a process is very weak Bernoulli if a certain 
property P(e )  is satisfied for every e > 0. By means of an easy proof, it is shown 
that given e > 0, there exists 8 > 0 such that given any two stationary processes 
whose d-distance is less than 8, if one of the processes is very weak Bernoulli 
then the other process is "almost" very weak Bernoulli in the sense that the 
property P(e) is satisfied. Using this result a direct proof can be given that the 
very weak Bernoulli processes are closed under the d-distance, and also that a 
finitely determined process is very weak Bernoulli. Relativized versions of these 
results are also considered. 

1. In this paper if S is a finite set, S ® denotes the set of all doubly infinite 

sequences x = (x,)T~-® from S. We make S ® into a measurable space by adjoining 
to S ® the usual product tr-field of subsets of S ®. By a process we will mean a 
measurable map X from some measurable space ft to a sequence space S®, S 

finite. We say X has state space S. If X : ~---, S® is a process and i is an integer, 
X, will denote the map from ~ - *  S such that 

x, (o,) = x(,o),, o, 

For integers m, n with m = n, X ~  will denote the function (Xm,X,,,+~,...,X,), 
X~-® will denote the function ( . . . ,  Xn-1, X,) ,  and if n is positive, X n will denote 

(XI ,"  ", Xn). If (~ ,  ~ )  is a m~asurable space let ~(II)  be the family of all 

probability measures on ~.  If X 1 , . . . , X ,  are measurable maps from fl  to 

measurable spaces S~ , . . . ,  S, respectively, and P E ~(l~),  then P(-I  X ~ , . . . ,  Xn) 

denotes a map from f~---, ~(II)  such that for each E E ~:, the random variable 

P(E IX1,..., Xn) serves as the conditional expectation under P of the charac- 

teristic function of E given the sub-g-field of ~: generated by X ~ , . . . ,  Xn. If, in 
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addition, X is a measurable map from f l  to a measurable space (S,S#), 

px(. I X~,..., X,) denotes the ~(S)-va lued  map defined on ~ such that for each 

E E ,~', 

pX(E I X, , . . . ,X,)  = P({X E E} I X , , . . . ,  X,) .  

p x  denotes the distribution of X;  i.e., the probability measure on ~ such that 

PX(E)  = P(X E E), E E ~. 

Let C, D be finite sets and ~r : C x D ~ [0, oo) a non-negative function. Let 

U, V be the projections from C x D to C, D, respectively. Then if tt ~ ~ ( C ) ,  

v (E ~ ( D ) ,  we define #(/z, t,), the #-distance between tt and t,, as follows: 

# ( / z ,  v)  = inf E, cr(U, V), 

where ~(/x, v) denotes the set of all A E ~ ( C  x D )  such that A u =/z,  A v = v, 

and E~ denotes expectation with respect to A. 

Fix finite sets A, B for the rest of the paper. Let TA (TB) denote the shift 

transformation on A = (B~). Let TAx TB denote the map from A ® x B ~ ~ A = x 

B OO such that 

(TA x TB)(x, y) = (TAx, T,,y). 

Let ~(T,~) (Ba(TB)) denote the set of measures in ~ ( A  ®) (~(B®)) stationary 

with respect to TA (TB). Let ~(TA x TB) denote the set of measures in 

9 ( A ~ x  B ®) stationary with respect to TAx Ts. 

Let d : B x B ~ [0, 1] be the Hamming distance (d(x, y) = 0, x = y;  d(x, y) = 

1, x ~  y). For each n = 1 , 2 , . . . ,  let d. : B "  x B" ---~ [0,o0) denote the n th  order 

Hamming distance, which is defined so that if x = ( x l , ' . . , x , )  and y = 

( y , . . . , y , )  are in B" then 

d. (x, y) = n-' ~ d(x,, y,). 
i = l  

Let X, Y be the processes which are the projections from A ®x B®---. A ®, B ® 

respectively. Let I7 : B®---~ B ~ be the identity map. If A E ~(TA),  let ~(A)  be the 

set of all measures/~ in ~(TA x TB) such that x = A. 

If v E ~ ( T s ) ,  we say l, is very weak Bernoulli (VWB) [9, p. 92] if for any 

e > 0, there exists a positive integer m such that 

E~d~(~',  ~ ' ( .  I ~ ) ) <  ~. 
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If A E ~(TA) and It E ~(A),  we say It is A-conditionally VWB [11] if for any 
e > 0 there exists a positive integer m such that 

E,,dm (it v- ( .  IX),/~ v- ( .  IX, yo=)) < e. 

If It, v E ~(TB), then d(/z, v), the d-distance between It and v [3, p. 15], is 

inftu.v)Ed(Uo, Vo), where the infimum is over all pairs of jointly stationary 

processes (U, V) (defined on a common probability space) such that U, V have 

state space B, U has distribution It, and V has distribution v. If A E ~(TA) and 
It, v E ~(A), then d, (It, v), the A-relativized d-distance between/z and v [10], is 

inftu, uv) Ed(Uo, Vo), where the infimum is over all triples of jointly stationary 

processes (H, U, V) such that H has state space A, U, V have state space B, the 

joint distribution of (H, U) is It and the joint distribution of (H, V) is v. 

2. We state now the main result of the paper. Its simple proof will be given at 

the end of the paper. 

THEOREM 1. Let A E ~(TA), It, v ~ ~(A). Let tz be A-conditionally VWB. 

Then if d, (It, v) < e there exists a positive integer m such that 

Evdm(vY' (  • IX), vY ' (  • IX, Y°-®)) < 2e. 

Note that if A E ~(TA) is concentrated on a single element of A ®, and 
It, v E ~(A),  then d, (it, v) = d(It v, vY). Also,/~ is A-conditionally VWB if and 
only if ~ v is VWB. Thus we obtain the following corollary. 

COROLt~RY 1. Let It, v E ~(Ts) .  Let It be VWB. I f  d(it, v ) <  e then there 
exists m such that 

Evd-( I 

As an application, we present four results following from Theorem 1 and 

Corollary 1. The results are known, but the first published proofs of them were 

long and indirect. The first two results follow immediately from Theorem 1 and 

Corollary 1 and so require no proof. 

I. Let A • ~(T,~). If It E ~(A)  is the d,-limit of a sequence of A-conditionally 

VWB measures from ~(A),  then It is A-conditionally VWB. 

II. If It ~ ~(TB) is the d-limit of a sequence of VWB measures from ~(TB), 
then /z is VWB. 

For the next two results we need a couple of definitions. We say It E ~(TB) is 

finitely determined (FD) [9, p. 81] if convergence of any sequence {/z,} from 
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~(TB) to Ix weakly and in entropy implies convergence to IX in d-distance. If 

A E ~(TA) and IX E ~(A), IX is A-conditionally FD [10] if convergence of any 

sequence {IX,} from ~(A) to IX weakly and in entropy implies convergence to g 

in d~-distance. 

III Let A E ~(Ts)  and let g E ~(A) be A-conditionally FD. Then IX is 

A-conditionally VWB. 

PROOF. Pick a sequence {IX,} from ~(A) which converges to IX weakly and in 
entropy, such that for each n, there exists a positive integer m such that for 

Ix.-almost all x E A ®, the tt,-conditional distribution of Y given X = x is m th 

order mixing Markov. Then each it, is A-conditionally VWB [7] and 

dA (IX,, IX)--*0. Hence, by Result I, g is A-conditionally VWB. 

The last result can he proved in a similar fashion to III, or it can be observed 

that it follows from III by taking A to be a trivial measure. 

IV. If g ~ ~(TB) is FD, it is VWB. 

HISTORICAL REMARr, s. IV was first shown by Ornstein and Weiss [4] using a 

long, indirect argument. A much simpler second proof was given by Feldman [1] 

using a property of measures called d-extremality. III was shown by Rahe [6] 
using a generalization of the argument of Omstein and Weiss. II had to be 

deduced previous to this paper in an indirect manner by using the fact that 

d-limits of FD measures are FD [2, p. 66], and that a measure is FD if and only if 

it is VWB [4], [9, theorem 12.3]. (Or one could proceed in a similar manner using 
the concept of d-extremality [1] in place of the FD concept in the previous 

sentence.) Similarly, I had to be deduced using the facts that a dA-limit of 

A-conditionally FD measures is A-conditionally FD [10, prop. 7] and that a 
measure in ~(A) is A-conditionally FD if and only if it is A-conditionally VWB 

[6] [11, lemma 6]. 

3. We conclude the paper by giving a couple of lemmas and then the proof of 

Theorem 1. 

LEMMA 1. Le t  C1, " " ", C . ,  D1, " ", D .  be f ini te  sets. L e t  U~ (i = 1 , . . . ,  n )  be the 

projection f rom C,  × . . .  x (7., --* C~. For  each ' i ,  let ~ri : C~ x Di ~ [0, oo) be given.  

Let o- : (C, x... x C.) x (DI x... x D,)---* [0, oo) be the function 

o-( (x , , . . . ,  x.) ,  ( y , , . . . ,  y.))  = (x,, y,). 

Le t  tx E ~ ( C ~  x . . . x C , ) ,  v E ~ ( D ~  x . . . × D , ) .  Suppose  there are measures  

v~ E ~ ( D ~ )  (i = 1 , . . . ,  n )  such that  u = u~ × . . .  x v, .  Then,  
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oct., ~) ~,~,(~.",, .,)+ E. [,=~ ~,(~ ~'('l u'-~), ",)] • 

PROOF. We can assume n = 2. (A simple induction argument can then be 

used for general n.) Let U,  V~ be the projections from Ci x Di--* C,D~ 

respectively, i = 1, 2. Fix a probability measure 7r on (71 x D1 such that the 

distribution of /_), under ~r is /z u,, the distribution of I7', under zr is v~, and 

E~o'~(U,, V,) = ~q(iz u~, v~). For each x E C~ fix a probability measure /z ( ,  t x) on 

(72 such that /~(. [/_]1)--/zu~( • I U0 a.e. [/z]. For each (x, y ) ~  C, x DI define a 
probability measure or(-[ x, y) on C~ x D~ such that the distribution of l-)5 under 

this measure is/z (-I x), the distribution of I7'2 is v2 and the rr(. [ x, y) expectation 

of or2(U2, V2) is ~2(/z (- I x), vz). Let ~- E ~((C,  x C2) x (D, x D2)) be the measure 

#((x. x~), (y,, y~)) = ~(x,, yl)~(x~, y~ I x~, y0. 

Then the distribution of U under ~" is/x and the distribution of V under ~ is v, 

where U, V are the projections from (C1 x G )  × (DI x D2) to C1 x (72, Dt x D2 

respectively. Hence, 

6"(p., v) < E¢,tr(U, V)  

= ~(~ % ~'~) + [ ~~0.(" [ Xl), ~,~)a~(x~, y~) 
d c  I×DI 

= d't(~ u,, v,) + E~,d'2f/z ~s,(. [ U,), v2). 

The proof of the following lemma is so simple that we omit it. 

LEMMA 2. Let C, D be finite sets, and let a : C  x D--* [0,oo) be a given 

function. Let i z , , . . . ,  i~. E ~ ( C ) ,  v , , . . . ,  v, ~ ~ ( D ) ,  and let a , , "  ", a, be non- 

negative numbers summing to one. Then, 

PROOF OF THEOaEM 1. Fix A E ~ ( T a )  and /~, v E ~(A)  such that /~ is 
A-conditionally VWB and d~ (/~, v) < e. Fix e'  so that a~ (/~, v) < e '  < e, and also 
8 > 0 so that ~ + e '  < e. On some probability space (1~, ~, P)  we may find jointly 

stationary processes (H, U, V) such that the distribution of (H, U) is #., the 
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distribution of (H, V) is v, and P[ Uo # Vo] < e'. Since/z is A-conditionally VWB 
find k such that 

E,~k (e u,, (. I H), P u,, (. I H, U°®)) < & 
~ j - 1  U lk+k. 

For each positive integer j, let 11,=o P "÷'(. I H)  denote the ~(BJk)-valued map 
"--1 ik +k 

on II such that for each to ~ I~, [I]',.o pu,÷,(. I H)] (to) is the product measure 

pu~ ( . I H ) ( t o  ) x pu :~ , (  . I H ) ( t o  ) x . . . x pu'~_,,,÷,( . I H ) ( t o ) .  

Then, by Lemma 1, 

j-1 ) j-1 
E~k Pw' ( ' IH  ), N Pu:+*f('lH ) <=J-' E 

i=1 
Ed-k (pu:::f(, I H ' U,k), pUb;f(. I H)) 

which approaches 

Similarly, 

(1) 

j -1 

= / ' E  
i=1 

Edk (P u,(.  ] H, U°_,k), P u,( .  I H)), 

Ed, (PU* (. I H, U°_®), P u, (. t H)) as j ~ oo. 

j-1 ) 

Ed, k pu,, ( . t H ' UO__®, VO_.), N eU::~f( . 1 H) 

j - I  

V-ikX pUk <= j-' ~, Ed~ (pu*(. ! H, U ° . . . . .  s, - (" ] H)). 
i=O 

Fix i. For each to Ef t ,  the dk-distance between the measures 
Pu*(.IH, U°-,, V--~)(to) and Puk('IH, U°-®)(to) is no greater than the total 
variation distance, which by [5, chap. 2] is upper bounded by 

~b[b~ pu~(b IH ' uO®, Vz~)(to)logPU~(b H, U°-®, V:2)(to)l 
PU~(b H, U°-®)(to) ] '  

where th : [0, oo)--. [0,oo) is the function ~b(x) = 2x + 20X/x, and the logarithm is 
natural. Now $ is a concave function, so by Jensen's inequality 

Edk (P uk (. I H, U°®, VZ~), P ok (. I I-I, V°_®)) < ch (I( U k, VZ~ I H, U°-®)), 

where the argument of $ denotes the conditional mutual information of 
U ~, V-~ given H, U°-~. But, by [8, theorem 7.6], lim,_~ I(U ~, V--~IH, U°-~)= O. 
Therefore, the right hand side of inequality (1) converges to 
Edk (P o,(.  I H), PU'( .  I H, U°-~)) as j --* ~. By the triangle inequality, we have 
then that for j sufficiently large, 

E~k (P u,k(. [ H), P u,E(. I H, U°-®, V°-~)) < 2& 
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By definition of the t~k-distance, 

& (P ~" (" [ H), P ~" (" I H)) ~ E [4~ (U'~, V'~) [ H]. 

Taking the expected value, 

Ed, k (PV'~ ( • I H) ,pv"(  • I H ) ) ~  E[ d,k ( U '~, Wk)] = P[ Uo ~ Vo]~ e'. 

Similarly, 

E& (P ~" ( .  [ H, U°-., V°_.), P ~'~ ( - [  H, U°_., V°-o)) < e', 

and so by the triangle inequality and Lemma 2, for j sufficiently large, 

E,~k (v r,,(. I X), v"(" [ X, yo_®)) = E~E (pv,, (. [ H), P v,~(. { H, VE®)) 

E~k (P v,,(. [ H), P v,,(. I H, V°-®, U~®)) 

<28 + 2 e ' < 2 e .  

Isr. J. Math. 
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